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Cosmic microwave background (CMB) anisotropy may result from both 

scalar and tensor perturbations. For a sufficiently narrow range of angular scales, 

CMB perturbations can be characterized by four parameters. Results from the 

Cosmic Background Explorer ti one combination of the parameters, reducing 

the parameters to three. If CMB perturbations are from inflation, there is an 

additional relation, reducing the parameters to two. An appropriate combination 

of a medium-angle and a small-angle CMB observation can test the inflation 

hypothesis because inflation cannot explain a high signal in one experiment and 

a low signal in the other. 
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Guth pointed out that a rapid expansion early in the history of our Universe could solve 

several problems of the standard cosmology, the most notable being the horizon and flatness 

problems [l]. It was realized shortly after the initial proposal that inflation does more than 

provide a smooth Universe: It also generates small perturbations on the smooth background 

[2]. These small perturbations may well be the ones that grow via gravitational instability 

into the diversity of structures we see today in our Universe. 

Most successful models of inflation involve the dynamics of a weakly coupled scalar field 

that slowly evolves (rolls) under the influence of some scalar potential. This scalar field is 

called the inflaton. While the inflaton evolves during inflation, perturbations in the energy 

density arise as the result of quantum mechanical fluctuations of the inflaton field in de Sitter 

space. These perturbations in the energy density correspond to scalar metric fluctuations. 

In addition to the scalar metric fluctuations there should be tensor perturbations caused by 

de Sitter space fluctuations of the metric tensor [3]. 

In principle, one must specify the amplitude of the tensor and scalar perturbations on 

all length scales, each of which enters the horizon at different cosmic times. However, if the 

inflaton evolves slowly during inflation (as it must in order that its potential energy dominate 

the energy density) then the resulting scalar perturbations should approximately have the 

Harrison-Zel’dovich spectrum; the Fourier transform of their variance is a simple power law 

with exponent ns = 1. In the same slow-roll limit the Fourier transform of the variance of 

the tensor perturbations is also a power law, with exponent nT = 0. 

Of course the fact that the scalar field must evolve during inflation means that the 

resulting spectra won’t have exactly the above simple form. However since the field must 

evolve slowly, over a limited range of length scales (such as the length scales probed by 

CMB experiments) it should be possible to describe the scalar and tensor perturbations as 

power laws, with exponents not too different from the Harrison-Zel’dovich values. Therefore 

we will assume that the spectra can be described by four parameters: the amplitudes and 

spectral indices of the scalar and tensor spectra. 

The purpose of this Letter is to show that inflation is testable even though there are 

four parameters which describe the scalar and tensor spectra. In particular we argue that a 

good test of inflation can be constructed by combining information from three sets of cosmic 

microwave background anisotropy experiments: COBE [4] at large angular scales; one at 

medium angular scales, and a third at small angular scales. At first glance this seems a 

hollow claim, for there are four free parameters in the scalar and tensor spectra, and with 

four free parameters one should easily be able to fit three experimental results. How can 
- 
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just three experiments test inflation? 

Fortunately, inflation does make a generic prediction; namely a relationship between the 

shape of the tensor spectrum and its amplitude. Thus, there are only three free parameters 

if the perturbations arise from inflation. Suppose we fix one of these parameters with the 

COBE result. As we vary the other two, we can indeed significantly change the expected 

signal in both the small and the medium angle experiments. However, we find that the 

signal in the small-angle experiment scales in a predictable way as a function of the signal 

in the medium-angle experiment. So once the signal in one of these is fixed, the signal in 

the other is unambiguously determined. We can think of this abstractly as a mapping of 

the two-dimensional space of the two remaining free parameters after COBE normalization 

onto the two-dimensional space of signals in the medium- and small-angle experiments. If 

the mapping were onto, so that any point in the signal space could be reached by a point in 

the parameter space, then inflation could never be disproved by this set of experiments. Our 

claim is that the two dimensional parameter space is mapped into a single one-dimensional 

line in signal space. A‘ combination of experimental results not falling on this line cannot 

result from inflation, so there is a whole range of experimental results which can disprove 

inflation. 

Before discussing more precisely what we mean by “medium-” and “small-” angle experi- 

ments, we must introduce some notation. It has become standard to decompose the angular 

correlation function into a sum of Legendre polynomials: 

’ c(e) f (6T(8)6T(O)) = g ycPf(cos~). 

Recall that in this expansion, small 2 corresponds to large angles while large I corresponds 

to small angles. Experiments do not directly measure C(e), but rather measure some convo- 

lution of the Cl’s with a window function [S], Wl, determined by the particular experiment. 

Thus, the predicted variance in a given experiment is defined as 

(a$> = g $+wi. (2) 

To determine the predictions of a given theory, one must calculate the set of Cl’s it 

predicts [6]. Let’s briefly review the steps involved in such a calculation: (i) perturb the 

Einstein and Boltzmann equations about the standard zero-order solutions (the Robertson- 

Walker metric with homogeneous and isotropic distributions of photons, neutrinos, ordinary 

matter, and dark matter); (ii) Fourier transform these equations to express the perturbations 

A in terms of wavenumber k, time t, and in the case of photons and neutrinos, the angle _ 
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6 between the wavenumber and momentum; (iii) Expand the perturbations to the photons 

and neutrinos in terms of Legendre polynomials so that the angular dependence, A(e), is 

replaced by the coefficients, A,; (iv) Evolve these perturbed quantities starting from initial 

conditions deep in the radiation era: (bp/p)s(k, tinit) cx knsi2; (bp/p)T(k, tinit) oc k(“T-3)/2 

where nS = 1; nT = 0 for the Harrison-Zel’dovich spectra; (v) Determine the Cl’s due to 

both scalar and tensor modes today by integrating Cl,(s,r) oc j’d3kjhl,(s,T,(to)12; (vi) Add 

the two contributions [7]: Cl = Cl,s + C/,T. The proportional signs in steps (iv) and (v) 

are an indication that we do not know the normalization of either mode. We can fix one 

such parameter, say Cz,s, by using the COBE result [8]. The three remaining unknowns are 

R f &J/&J; ns, and nT. 

Now that we have defined the relevant parameters we can discuss the prediction of infla- 

tion. The tensor-to-scalar energy density ratio [9], r, as well as the spectral indices can be 

expressed in terms of the derivatives of the expansion rate, H, during inflation. In the limit 

that H is constant during inflation, [r, nT, ns] = [0, 0,l). However in slow-roll inflation H 

changes in time. Using.the value of the inflaton field as the time variable [+ = 4(t)], then one 

can cdcdate [r, nT, ns] as a function of e E 2[H’kWW)]/~*, rl = 2[H”(4>/H’(4)]/~2, 
and [ f 2[H”‘(q%)/H’(q5)]/~~. Here s2 s 8?r/m$iMd, and prime denotes d/d+ If (6, ‘I, c) are 

less than unity, then to first order in these parameters [lo] 

r, nT, 1 - ns] = (3) 

Therefore, to first order r = -6.25nr. A scalar-to-tensor ratio of r = -6.25nT results in 

R = C2,T/C2,S = -7nT. 

The set of Cl’s predicted by inflation is therefore dependent on two free parameters: 

Cl = Cl(ns, R = -7n~). Fig. 1 shows the Cl’s for several different values of these two 

parameters. The solid curve is for standard inflation [(R, ns) = (0, l)]. As ns increases 

the signal increases, the effect being greatest on the smallest scales. So the dashed curve, 

which is for (R, ns) = (0, 1.25), is higher than the standard one. As R increases, the signal 

at small angular scales [large I] goes down: (R, ns) = (2,1) produces the dotted curve in 

Fig. 1. The point is that the COBE signal [which comes from 1 < 201 is partly due to tensor 

modes in this case, thereby reducing the amplitude of the scalar component. The tensor 

contribution drops off after I = 100 (physically this is because gravity waves redshift once 

they enter the horizon; 2 = 100 is roughly the scale of the horizon at decoupling). So once 

I > 150, all that is left is the reduced scalar contribution. Note however that the signal in 

the medium angle range 2 w 50 also decreases. This is a consequence of the inflationary 
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Fig. 1: Cl’s predicted for three different inflation models. Cl’s are in units of (PK)~. 

prediction nT = -R/7. Since R = 2 in this case, the tensor spectrum is tilted so as to fall 

off rapidly with increasing 1. We can thus imagine that while alternative models of inflation 

may change the signal in either a small or a medium angle experiment, it will be very hard 

to change the signals in opposite directions. This observation is the basis for the test we will 

shortly describe. 

Before getting into the details of the test, we should spell out our assumptions. The Cl’s 

in Fig. 1 were generated assuming cold dark matter; zero cosmological constant; standard 

ionization history; Hubble constant today Ho = 50 km set-’ Mpc-‘; and the fraction of 

critical density in baryons today, Rs = 0.05. Varying any of these parameters can lead 
to significant changes in the Cl’s [ll]. Our philosophy is that these parameters, while not 

particularly well-determined today, are very likely to be determined in the future by exper- 

iments other than microwave anisotropy experiments [12]. Therefore, we feel it is unlikely 

that our lack of knowledge about these parameters will be the stumbling block keeping us 

from testing inflation. 
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Now for a method to test inflation. 

medium-angle filter, W/l’ = 1 for 30 < Z 

angle filter, Wi2) = 1 for 130 < 1 < 300 

each experiment is 

6T(‘)(ns nT, R) = 7 --bs, nT, R) 

I 

112 
6P(ns,nr, R) = . 

Imagine two anisotropy experiments, one with a 

< 90 and zero otherwise; the other with a small- 

and zero otherwise. Then the predicted signal in 

The first experiment would sample both scalar and tensor modes, while the second would 

sample only scalar modes. We have explicitly indicated that the signal in these experiments 

depends on the values of (ns, nr, R). The set of parameters allowed by inflation can now 

be mapped onto these two signals. Fig. 2 shows such a mapping for -0.5 < ns < 1.5; R < 

3.5; nT = -R/7. A larger range would not be consistent with our use of equation 3, which is 

true only to first order in the slow-roll parameters, e and r]. The important point is that this 

whole region of parameter space allowed by inflation is mapped onto a very narrow region, 

almost a line, in signal space (131. There is some scatter off this line, particularly if the 

signals are low. However, this low signal regime comes from ns < 0.5; such small values of 

ns, as we discuss later, are highly unlikely given other data. 

Inflation therefore predicts small deviations from this “line” in signal space. We can 

quantify this further by defining a linear combination of the signals such that one of the 

new variables is the distance from the locus of inflation predictions. A good measure of this 

distance is 

1 
where 

1 - = R = = R = Y = - ST(‘)(ns -5, O)/bT(‘)(ns 1, 0) 
1 - 6T(2)(ns = -5, R = O)/c5T(l)(n, = 1, R = 0)’ 

(5) 

Note that cr, p, and 7 can be calculated for any pair of filter functions. For the simple square 

ones [14] we have chosen, o = 0.77 and ,B = 0.63. So D is roughly the difference between - 
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Fig. 2: A mapping from the plane of inflation predictions into the signal plane of the medium 
(U(l)) and small (6f12)) angle experiment plane. Also shown are contours of constant D, 
defined in Eq. 5, and the error bars [centered around the (n = 1, R = 0) prediction] for 
experiments with 50 pixels and unity signal/noise ratio. 

the signals in the small and medium angle experiments, each of which is normalized by its 

standard value at ns = 1. The fact that inflation predicts D f! 0 means that inflation cannot 

explain a high signal in one of these ezperiments and a low one in the other. 

Fig. 3 shows D as a function of nS and R = -7nT. As mentioned above, D does begin 

to deviate from zero, but only in Knon-physical” regions in the parameter space. A way to 

quantify this is to note that as, the rms mass fluctuation in spheres of radius 8hS1Mpc, must 

certainly be greater [15] than about l/3, while the light region in Fig. 3 has us < l/3. [On 

the color version, colors redder than yellow in Fig. 3 have os < l/3.] So the value of D in 

these regions is irrelevant. In the “allowed” range, D is always less than 0.06. When nS > 1, 

D can become negative, as small as -0.1; however, such large values of nS are also thought 

to be unlikely because they would produce too much structure on scales of about 1 Mpc. 

We have defined a new parameter D [Eq. (5)] w ic combines information from a small _ h h 
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Fig. 3: The parameter D of Eq. (5) as a function of nS and R. 

and a medium angle experiment. Many experiments currently on-line are probing the angular 

regimes necessary to evaluate D. Viable models of inflation predict D < 0.06. It remains to 

be seen what values of D are predicted by other cosmological theories, such as those with 

non-Gaussian seeded perturbations. 
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